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Abstract

One of the most aggressive forms of breast cancer is inflammatory breast cancer (IBC),

whose lack of tumour mass also makes a prompt diagnosis difficult. Moreover, genomic dif-

ferences between common breast cancers and IBC have not been completely assessed,

thus substantially limiting the identification of biomarkers unique to IBC. Here, we developed

a novel statistical analysis of gene expression profiles corresponding to microdissected IBC,

non-IBC (nIBC) and normal samples that enabled us to identify a set of genes significantly

associated with a specific disease state. Second, by using advanced methods based on

controllability network theory, we identified a set of critical control proteins that uniquely and

structurally control the entire proteome. By mapping high change variance genes in protein

interaction networks, we found that a large statistically significant fraction of genes whose

variance changed significantly between normal and IBC and nIBC disease states were

among the set of critical control proteins. Moreover, this analysis identified the overlapping

genes with the highest statistical significance; these genes may assist in developing future

biomarkers and determining drug targets to disrupt the molecular pathways driving carcino-

genesis in IBC.

Introduction

The increasing availability of high-quality transcriptomic data for specific diseases offers the

possibility of uncovering complex statistical patterns hidden in gene expression profiles. The

discovered patterns may eventually be combined with the collective knowledge conferred by

the newly assembled large-scale interactome, thus offering a novel and promising framework

to investigate complex biological phenomena as well as the roots of genetic diseases [1–6].

Recent research has emphasized that a genetic perturbation of a single gene product is not usu-

ally responsible for the emergence of a disease phenotype [2]. In contrast, the complex cellular
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network built through multiple physical bindings and chemical reactions among molecules

contains pathological processes that lead to complex disorders. This information suggests that

the network can be potentially disrupted in distant locations whose perturbation affects entire

signalling pathways and molecular complexes, thus leading to the emergence of disease path-

ways and modules [1, 2].

The development of controllability methods to assess critical control as well as potential

dysregulation locations in complex biological pathways and networks is an important topic in

computational biology [1]. Maximum matching (MM) has recently been proposed as a novel

method to identify driver nodes (i.e., controllers) in directed networks [7, 8]. However, some

biological networks are undirected. More importantly, MM identifies a large number of

potential controllers, especially in scale-free networks, a typical structure that is abundant in

biological systems. In contrast, by using the minimum dominating set (MDS) approach, con-

trollability methods can be applied to both undirected and directed networks [9–11] and

bipartite networks [12, 13]. In addition, the set of driver nodes tends to be smaller, particularly

in scale-free networks [9, 14]. Although the problem is NP-hard and it is not plausible that

there exists an algorithm that can compute an MDS in polynomial time, pre-processing heuris-

tics and fast algorithms have recently been proposed that not only drastically decrease the

computational time (by more than 100 times) but also expand the solvable network size signifi-

cantly [15]. This result paves the way to the application of MDS methods to investigate control-

lability in proteome-wide protein interaction networks [16]. The MDS method is increasingly

being used for analysing biological networks from protein interaction networks, gene expres-

sion profiles, and metabolic networks to assessment correlation between cancer and control

features and topological modules [11, 15, 17–20].

In particular, Wuchty found that in protein interaction networks the MDS tends to be

enriched by cancer-related and virus-targeted genes [17]. Centrality-based MDS was also used

to identify associations between essential and disease-related genes [19]. However, the MDS

computation does not provide a unique solution, and several minimum dominating subsets

may control the network. Critical nodes, in contrast, are unique and present in all of the MDS

solutions. The development of critical controllability algorithms has led to several findings

such as unveiling associations between critical control proteins and essential genes using inte-

gration of gene expression profiles with proteome-wide protein interaction networks [15].

Non-coding RNAs with critical network control roles were also associated to specific human

diseases using bipartite networks [13]. See also the following review for details [11].

One of the most aggressive forms of breast cancer is inflammatory breast cancer (IBC),

which occurs when the lymphatic vessels in breast skin are blocked by cancer cells. The

absence of an evident tumour mass and its rapid development invading breast mass make a

fast and accurate diagnosis crucial [21, 22]. Moreover, genomic differences between common

breast cancers and IBC have not been completely assessed, thus greatly limiting the identifica-

tion of biomarkers unique to IBC and the development of drugs for disrupting IBC associated

molecular pathways.

Recent gene expression profiles analyses of IBC have also led to identify specific correlations

such the response to neoadjuvant chemotherapy and metastasis-free survival [23]. However,

critical controllability analysis of IBC gene expression profiles integrating large-scale protein

interaction network has not been investigated yet, which is the focus of this research.

In this work, we developed a novel statistical analysis of gene expression profiles corre-

sponding to microdissected IBC, non-IBC (nIBC) and normal samples [21]. This statistical

analysis enabled us to identify specific genes that are significantly associated with a specific dis-

ease. Second, by using advanced methods based on controllability theory, we identified a set of

critical control proteins that are located in the human protein-protein interaction network and
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can uniquely and structurally control the entire proteome. We then mapped the statistically

identified genes associated with a disease state onto a protein interaction network and evalu-

ated the degree of overlap between these genes and the identified set of critical control pro-

teins. The results suggested that a large statistically significant fraction of the genes associated

with IBC and nIBC diseases were also among the set of critical control proteins. Moreover,

this analysis identified the overlapping genes with the highest statistical significance; these

genes may assist in eludicating specific IBC associated molecular pathways as well as in future

drug developments.

Collected data

The microarray gene expression data for IBC were based on frozen tissue samples obtained

from core biopsies analysed by the University of Texas. Microdissection of tissue produces

high-quality gene expression data and significant noise reduction [21]. In addition, the full

dataset included nIBC and normal data and was downloaded from the publicly available GEO

database. In this analysis, the dataset consisted of genome-wide gene expression profiles with

20 samples of IBC, 20 of nIBC and five of normal state. Each sample corresponded to a patient

and included 40,990 gene probes. A preliminary analysis was conducted to determine the

genes among the replicated probes before the genes were mapped to the human protein inter-

action network. The H. sapiens protein interaction network was compiled from HINT Data-

base High-quality Interactomes Version 3 [16] and consisted of 11,762 proteins (nodes) and

49,855 interactions (edges). (See Supporting Information S1 File.)

Methods

Average and variance changes among three states

Let O be the collection of all probes. Let xA
i ðtÞ be the gene expression level, where t is the num-

ber of data points (samples), i 2 O denotes a probe, and A indicates one of three states: nIBC,

IBC, and normal. In other words, xnIBC
i ðtÞ, xIBC

i ðtÞ, and xnormal
i ðtÞ are the gene expression data

for nIBC, IBC and normal, respectively. Then, the average and variance for state A is given by

�xA
i ¼

1

N

XN

t

xA
i ðtÞ; ð1Þ

vA
i ¼

1

N � 1

XN

t

ðxA
i ðtÞ � �xA

i ðtÞÞ
2
; ð2Þ

where N is the number of data points (samples).

To examine whether the average is changed from the normal state to the disease state, we

define the change ratio of the averages between A and B state as follows:

cðA;BÞi ¼ log ð�xA
i =�xB

i Þ: ð3Þ

Similarly, to examine whether the variance is changed from the normal state to the disease

state, the change ratio of the variances between state A and state B is given by:

dðA;BÞi ¼ log ðvA
i =vB

i Þ: ð4Þ

Here, the possible pairs are (A, B) = (nIBC, normal), (IBC, normal) and (IBC, nIBC). This

expression measures the differential variability of the expression of each gene between two

states (see Fig 1). In other words, it enables selection of genes whose variance changes
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significantly from state A to state B (for example, normal state (A = normal) to disease state

(B = nIBC or IBC). As we will discuss in the next section, we mainly used dðA;BÞi rather than

cðA;BÞi to check the association of dynamic change nodes and critical nodes.

To select the genes (probes) whose variance in the disease state was significantly changed

from that of the normal state, we use a one-tailed F-test. We compute the p-value with a null

hypothesis such that the population variance of state A (vA
i ) is equal to that of state B (vB

i ). The

ratio of the sample variance follows an F-distribution under the null hypothesis. Then, we can

compute the p-value for the observed vA
i =vB

i as follows:

pðA;BÞi ¼ PðF > vA
i =vB

i Þ; ð5Þ

where F is a random variable from the F-distribution with parameters N1 and N2. Here, N1 and

N2 are the number of data points (samples) of states A and B, respectively. A small p-value sug-

gests that for that probe (gene), the variance in the disease state is significantly different from

that in the normal state.

The original dataset contained several probes for each gene. Therefore, we statistically select

one probe as a representative for each gene to map the gene products to the protein-protein

interaction network. We then select from multiple probes one probe that corresponds to the

same gene by selecting the probe with the lowest p-value. Let O0 (O0� O) be the collection of

all filtered probes that uniquely correspond to only one gene. Then, by identifying each gene

Fig 1. Illustration of the statistical concept observed in our analysis. We observed two representative samples (gene

a and gene b) of expression dynamics when transitioning from two different states. First, the gene a does not show

significant changes in both average and variance in both states. However, the gene b exhibits high change of both average

and variance when transitioning from normal to IBC state.

https://doi.org/10.1371/journal.pone.0186353.g001
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by the corresponding lowest p-value probe, we consider that O0 is the set of genes to be

mapped to the protein-protein interaction network.

Controllability in protein interaction networks

Recently, several structural controllability methodologies have been proposed to investigate

associations between controllers (i.e., driver nodes) and biological functions. Among them,

the MDS approach has been successfully applied to biological networks to determine associa-

tions between life molecules and biological functions [11]. Through the MDS method, statis-

tical associations between the sets of cancer genes and virus target genes and the set of

structural controllers have been uncovered [17]. However, the MDS method does not provide

a unique solution, and several subsets of nodes may potentially control the entire network.

To uniquely identify the subset of nodes that control the whole network, the nodes must be

categorized into critical, intermittent and redundant nodes [10]. Those nodes belonging to

the critical set are, therefore, present in all of the MDS solutions. This set of nodes is thought

to be the most important in terms of controllability features. Because the MDS problem is

NP-hard, it is not plausible that there exists an algorithm that can compute the solution in

polynomial time. Therefore, it is very difficult to solve the critical MDS problem in a large-

scale network, such as the human protein-protein interaction network. However, recent

developments have led to the discovery of a new algorithm that uses a preprocessing step that

not only significantly decreases the computational time but also expands the computable net-

work size [15]. In this work, we used and applied this algorithm to identify the critical set of

nodes present in a proteome-wide protein-protein interaction network by using the HINT

database.

To identify the MDS and the critical set, we formalized a problem that can be solved using

Integer Linear Programming (ILP) [9]. The MDS problem can be formalized as an ILP prob-

lem as follows:

minimize
X

v2V

xv; ð6Þ

subject to

xv þ
X

ðu;vÞ2E

xu � 1 ð8v 2 VÞ; ð7Þ

xv 2 f0; 1g ð8v 2 VÞ: ð8Þ

The critical set should consist of nodes that are present in all of the possible solutions of an

MDS. Therefore, the ILP should be solved many times, thus slowing the computation. To

address this drawback, new methods have been developed by Ishitsuka et al that apply some

pre-processing steps that simplify the resulting ILP problem and speed up the computation

[15]. The algorithmic steps are as follows:

First, we apply the critical proposition for each node, which states that if node v has two or

more neighbouring nodes with degree k = 1, v is a critical node. Second, we apply the redun-

dant proposition for each remaining node, which states that if all neighbours of a node v are

critical nodes, v is a redundant node [15].

After these two preprocessing steps have been considered, we then proceed as in [10] to

determine all control categories of all nodes. Because these preprocessing heuristics largely
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simplified the MDS problem, it is possible to speed up the computation of control categories

and obtain the solution even in large neworks [15].

Determining associations between high change variance nodes and

critical nodes

In this work, we examine whether the critical nodes are statistically associated with a high

change in variance nodes. Recently, methods based on fluctuation dynamics, such as volatility-

constrained correlation, have been applied to predict control directionality in gene regulation

using gene expression profiles [24]. Here, we first provide a general method to determine

whether a subset of nodes is statistically associated with a high change variance nodes. Further-

more, we use a two-tail binomial test to estimate the statistical significance of this association.

To determine genes with high change in variance, we select genes below the threshold χ for

p-value pðA;BÞi defined in the previous section. We define the group of the selected genes α(A,B)

and the remaining set of genes β(A,B) as follows:

aðA;BÞ ¼ fi 2 O0 : pðA;BÞi < wg ð9Þ

b
ðA;BÞ

¼ fi 2 O0 : pðA;BÞi > wg: ð10Þ

In other words, α(A,B) is the group of higher change variance genes, and β(A,B) is the group of

lower change variance genes. Then, the probability that one gene belongs to α(A,B)-group is

given by

r ¼
#aðA;BÞ

#aðA;BÞ þ#b
ðA;BÞ ; ð11Þ

where #α(A,B) and #β(A,B) are the number of the elements of α(A,B) and β(A,B), respectively. In

other words, r is the probability that the variance of one genes changes significantly between

the normal and the disease state, and significance is determined by threshold χ.

To identify a statistically significant association between the set of high change variance

nodes and the set of critical nodes, we perform the following calculations: Let us consider a

subset of genes S� O0. Let η be the number of S. Then, rη is the expected number of S in α-

group. However, if we find that the actual number of S in α group is more than the expected

value rηwith high statistical significance, then we assume that S is related to higher change

variance genes. Statistical significance is computed by a two-tail binomial test. Note that the p-

value of this test is given by

~p ¼ 2� PðX > xÞ ð12Þ

where X is the random variable of the binomial distribution with probability r and total num-

ber η, and x is observed number of critical nodes in alpha groups. If x< rη, we compute the

p-value by taking the opposite tail.

Results and discussion

Probability density shift towards high change ratio of gene expression in

nIBC and IBC from normal state

In Fig 2(a)–2(f), we show cðA;BÞi and dðA;BÞi for the three state pairs (A, B) = (nIBC, normal), (IBC,

normal), and (IBC, nIBC), respectively. The results show that disease states have a higher aver-

age than those of normal states (Fig 2(a) and 2(c)). Moreover, the disease states also have a

Identification of critical control proteins associated with inflammatory breast cancer
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larger variance than that of normal states (Fig 2(b) and 2(d). Although these observed signals

are weaker for the (IBC, nIBC) states, the shift is also present in both average and variance dis-

tributions (Fig 2(e) and 2(f)), thus showing that the IBC state induces the largest differential

change in gene expression. Furthermore, we also see that signal of di (change in variance) is

more significant than that of ci (change in average) (see Fig 2(a), 2(b), 2(c) and 2(d)). The coef-

ficient of variation (CV) is defined as the ratio of the standard deviation (STD) to the average.

Table 1 shows that the results for the CV of di are lower than those of ci in (A, B) = (nIBC, nor-
mal) and (IBC, normal) cases. This result suggests that di (change in variance) is a better indi-

cator than ci for discriminating a disease state from a normal state. Therefore, in the next

section, we focus on the change in variance di rather than ci (change in average). Next, in

Fig 3(a)–3(c), we show the distribution of (ci, di) for nIBC-normal, IBC-normal, and IBC-

nIBC state pairs, respectively. These results indicate that ci and di are linearly scaled.

Fig 2. The probability density for the ci (a,c,e) and di (b,d,f) change ratios for all three state pairs. The results clearly show a displacement of the

distribution to the right hand size. This shift is more significant in the case of di change ratio. The disease state pairs are indicated in figure.

https://doi.org/10.1371/journal.pone.0186353.g002
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Proteins engaged in structural critical control also exhibit a high change

in expression variance

Previous analyses have shown the importance of identifying the minimum driver set (MDS) of

nodes required to control a complex network. The methods that determine the MDS have

been applied to several real biological networks and systems. By using newly developed meth-

ods that allowed us to compute the MDS in large networks, we investigated the association

between structural critical control nodes and high change in variance nodes in terms of gene

expression level in transitioning from normal to disease states. First, we computed (1) the criti-

cal control set of proteins by applying an algorithm from Ishitsuka et al to a large-scale human

protein-protein interaction network [15] The results showed that 10% of proteins were classi-

fied as critical nodes. The redundant set of proteins represented 60% of the entire proteome.

The intermittent set of proteins, which control some network configurations, represented

30% of all proteins. The critical set of proteins was the smallest fraction and was used in our

analysis to examine the association between dynamic gene expression features and structural

controllability. Second, we mapped (2) the set of genes exhibiting a high change in expression

variance on this network and calculated the statistical association between both sets of nodes

(1) and (2).

Table 1. Statistical results for the average, variance and CV corresponding to the data shown in Fig 2.

Pair nIBC-normal IBC-normal IBC-nIBC

ave of ci 0.050938 0.08245 0.03151

std of ci 0.284793944 0.2989 0.180037

CV of ci 5.5909 3.6263 5.7133

ave of di 0.77605 0.9355 0.15944

std of di 0.86325 0.8554 0.6559

CV of di 1.1123 0.91447 4.11362

https://doi.org/10.1371/journal.pone.0186353.t001

Fig 3. Comparison of the distribution (ci, di) for all three state pairs. The distribution of (ci, di) for nIBC-normal, IBC-normal, IBC-nIBC state pairs,

respectively. The results show that ci and di are linearly scaled.

https://doi.org/10.1371/journal.pone.0186353.g003
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Note that because the change in variance was more significant than the change in the aver-

age, as described in the previous section, we used dðA;BÞi rather than cðA;BÞi , thus uncovering an

association between critical nodes and nodes with high changes in variance.

Let C be the set of critical nodes. Let η be the number of overlaps S = C \O0, which are crit-

ical nodes overlapping with the mapped genes from expression data. We compute the proba-

bility r that one gene belongs to the high change variance nodes group α(A,B) by Eq (9).

If critical nodes are not related to high change variance nodes, rη is the expected number of

critical nodes in α(A,B)-group. However, we find that the actual number of critical nodes x in

α(A,B) group is more than the expected value rηwith high statistical significance.

The computation results are shown in Table 2. As an example, we explain in detail the case

for nIBC-normal. We consider two thresholds, χ = 0.05 and 0.01, for grouping high variance

change set of genes α(nIBC,normal). For the threshold χ = 0.05, the probability that one gene

belongs to high change variance group α(nIBC,normal) is r = 0.5158. Thus, the expected number

of critical node in α(nIBC,normal) is rη = 336.86. However, the actual number of critical nodes in

α(nIBC,normal) (x = 441) is much larger that the expected value, with statistical significance

(p-value: ~p ¼ 2:2� 10� 16). In similar way, nIBC-normal (χ = 0.01) and IBC-normal (χ = 0.05

and 0.01) cases exhibit similar tendancies (i.e., critical nodes are present in high variance

change group more than expected with high statisitcal significance). This relationship is, how-

ever, not observed for the IBC-nIBC pair.

This finding suggested that the critical gene products (proteins) are significantly associated

with the high change variance genes in transitioning from normal state to disease state (either

nIBC or IBC). In other words, the set of proteins engaged in structural critical control has a

higher chance of having a high change in variance in gene expression level in transitioning to a

disease state (IBC or nIBC) from a normal state. Table 3 shows the set of identified critical con-

trol genes with the largest change in variance in gene expression levels.

Identified critical genes and their functionality

The identified critical control genes ranked on the basis of the largest change in variance

(smallest p-value) in gene expression levels in transitioning from normal to nIBC and IBC dis-

ease states are shown in Table 3. Among all the genes, only four were uniquely associated with

the IBC state. Moreover, six genes were identified in both the nIBC and IBC disease states.

Here, we investigated the functionality of these genes in the literature and whether they have

been associated with cancer in previous studies (see Table 4).

First, we considered the overlapping set of genes. MAGEA12 (MAGE family member A12),

also known as melanoma-associated antigen 12 or cancer/testis family 1, member 12, has been

reported to be highly expressed in multiple tumours and cancers, such as head and neck squa-

mous cell carcinoma, lung and breast cancers and melanoma. This gene has been observed to

Table 2. Results of the statistical analysis for the association between critical proteins and genes with a high change in variance for three disease

state pairs. η = 653.

pair threshold χ r expected (rη) actual (x) p-value (~p)

nIBC-normal 0.05 0.5158 336.86 441 2.2 × 10−16

nIBC-normal 0.01 0.3210 209.64 282 2.50 × 10−9

IBC-normal 0.05 0.60211 393.18 456 2.61 × 10−7

IBC-normal 0.01 0.40299 263.15 326 5.53 × 10−7

IBC-nIBC 0.05 0.14128 92.260 79 0.147

IBC-nIBC 0.01 0.05852 38.21 36 0.792

https://doi.org/10.1371/journal.pone.0186353.t002
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be expressed in only normal testis tissues but not in other normal tissues [25–27]. This obser-

vation is consistent with our findings, because our results suggested strong associations in

both IBC and other types of breast cancer (nIBC). Regarding gene ontology, the biological pro-

cess associated with this gene is still unknown.

FOXJ1 (forkhead box J1) has been previously associated with allergic rhinitis (ALRH) dis-

ease susceptibility. This common disease caused by allergen exposure induces mucosal inflam-

mation. Interestingly, variations in FOXJ1 expression levels are correlated with progression

and tumour cell proliferation of gastric cancer and hepatocellular carcinoma [28, 29]. The

related ontological biological processes include actin cytoskeleton organization, activation of

GTPase activity, and brain and epithelium development. ACTN2 (actinin alpha 2) is a multi-

role actin-binding protein in a large variety of cell types. The associated biological processes

include MAPK cascade, actin filament uncapping, cardiac muscle cell, cell adhesion and nega-

tive regulation of potassium ion transmembrane transporter activity [30]. CDC6 (cell division

cycle 6) is a gene that encodes a key protein with regulatory roles in the early steps of DNA rep-

lication. CDC6 protein is localized in the cell nucleus during cell cycle G1. However, when the

S phase starts, CDC6 translocates to the cytoplasm. High expression of CDC6 is also correlated

with accelerated cell proliferation in epithelial ovarian cancer [31, 32]. The associated biologi-

cal processes include DNA replication, G1/S transition of the mitotic cell cycle, cell division

and positive regulation of cytokinesis. KRT31 (keratin 31) encodes an acidic protein responsi-

ble for forming hair and nails [33]. The biological processes associated with this protein

Table 3. Identified critical control genes with the largest change in variance in expression levels in

transitioning from normal to IBC and nIBC disease states.

rank nIBC-normal IBC-normal

1 MAGEA12 CGA

2 FOXJ1 ACTN2

3 ACTN2 MAGEA12

4 CDC6 KRT31

5 KRT31 FOXJ1

6 NDUFA4L2 ERBB2

7 SPERT SH3GL2

8 ERBB2 CDC6

9 GFI1B ELN

10 MLX GAL

https://doi.org/10.1371/journal.pone.0186353.t003

Table 4. Annotation and functionality for the unique proteins identified in transitioning from normal to both IBC and nIBC states. Main GO Molecular

functions are described in Table. GO Biological processes are discussed in main text.

Gene Symbol Gene ID UniProt GO Molecular Function

CGA 1081 P01215 Hormone activity

ELN 2006 P15502 Extracellular matrix structural constituent

GAL 51083 P22466 Galanin receptor activity

MAGEA12 4111 P43365 Not known, though may play a role tumor transformation or progression

FOXJ1 2302 Q92949 DNA binding

ACTN2 88 P35609 Calcium ion binding

CDC6 990 Q99741 Nucleotide binding

KRT31 3881 Q15323 Structural constituent of cytoskeleton

ERBB2 2064 P04626 ATP binding

SH3GL2 6456 Q99962 Lipid binding

https://doi.org/10.1371/journal.pone.0186353.t004
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include cornification, cytoskeleton organization, epidermis development and keratinization.

ERBB2 (erb-b2 receptor tyrosine kinase 2), also known as HER2, encodes a protein belonging

to the epidermal growth factor (EGF) family of receptor tyrosine kinases. The gene ontology

information indicates that HER2 participates in processes including the ERBB2 signalling

pathway, MAPK cascade, cell proliferation and negative regulation of ERBB signalling path-

way. The involvement of ERBB2 has been demonstrated in multiple human disorders. Indeed,

it has been found to be overexpressed in approximately 30% of human breast cancers [34] and

in many other cancers, including ovarian, stomach, bladder, salivary, and lung cancers [35].

There is strong evidence supporting a dysregulatory role of ERBB2 for normal cell-control

mechanisms, thus leading to an aggressive form of tumour cells [36].

Among the highly ranked genes shown in Table 3, four were uniquely assigned to the tran-

sition between normal state to IBC disease. Here, we describe the biological functionality of

these genes.

CGA (glycoprotein hormones, alpha polypeptide), also known as CHGA, encodes an alpha

subunit protein and belongs to the glycoprotein hormones alpha chain family. Although little

is known about CGA involvement in carcinogenesis, some research has found associations

among CGA gene overexpression, gastric cancer occurrence and gastric cancer cell apoptosis.

Mutations and abnormal protein expression of this gene have been found in several other can-

cers, such as lung, pancreatic, neuroblastoma, prostate cancers and pituitary tumours [37, 38].

The biological processes involved include cell-cell signalling, peptide hormone processing,

positive regulation of cell migration, and positive regulation of cell proliferation. The ELN

(elastin) gene is located in the Williams-Beuren syndrome (WBS) region. Haploinsufficiency

of ELN has been suggested as the origin of the cardiovascular and musculoskeletal abnormali-

ties observed in the disease. Researchers have found evidence of severe changes and even frag-

mentation of elastin in invasive type of tumours, in which those fibres are disrupted [39, 40].

The biological processes involved include animal organ morphogenesis, blood circulation, cell

proliferation, extracellular matrix disassembly and extracellular matrix organization. The GAL

(GAL galanin and GMAP prepropeptide) gene is widely expressed in a variety of human sys-

tems ranging from gastrointestinal, pancreas and urogenital tracts to central and peripheral

nervous systems. More recently, higher expression of GAL has been associated with tumour

recurrence among colorectal cancer patients [41]. Its related biological processes include

cAMP-mediated signalling, feeding behaviour, inflammatory response, insulin secretion, and

negative regulation of lymphocyte proliferation. Finally, SH3GL2 (SH3 domain containing

GRB2-like 2), also known as Endophilin-A1, is frequently deleted in non-small cell lung can-

cer. This protein has been shown to downregulate tumour growth by modulating EGFR sig-

nalling [42]. The loss of Sh3gl2 is associated with increased tumour grade and with muscle

invasion, which is a reliable predictor of metastatic disease and cancer-derived mortality [43].

The biological processes associated with this gene are antigen processing and presentation of

exogenous peptide antigen via MHC class II, central nervous system development, membrane

organization, microtubule-based movement, and negative regulation of the EGF receptor sig-

nalling pathway.

Conclusion

The combination of structural controllability methodologies with high-quality gene expression

profiles of breast cancer is a novel research direction that warrants further investigation. In

this work, we found two main results. First, we unveiled a statistical feature hidden in the gene

expression profiles of IBC and nIBC datasets. This feature showed that a subset of genes exhibit

a high change in variance in the disease state compared with the normal state. These genes are
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therefore expected to play a key role in the transition from the normal state to both IBC and

nIBC states. Second, by using a recently proposed algorithm for critical controllability, we

were able to identify an optimal critical set of proteins that structurally controls the entire pro-

tein-wide protein interaction network. Our analysis established a statistical relationship

between the set of critical proteins and the set of genes whose fluctuations are highly coupled

to both breast cancer and IBC disease states.

Furthermore, the analysis of the identified critical control genes with the largest change in

variance revealed that more than half of genes were responsible for both nIBC and IBC disease

states. The genes uniquely associated with IBC were also examined in detail, and we found,

through using different analytical methodologies, that a fraction of them were also associated

with IBC disease, thus validating our results.

We believe that the presented results may encourage further research on both theoretical

controllability analysis and biological experiments seeking to identifying drug targets to dis-

rupt the molecular pathways driving carcinogenesis in IBC.
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